Surjective function

Surjective function

In mathematics, a surjective function (also known as surjection, or onto function) is a function f that every element y can be mapped from element x so that f(x) = y. In other words, every element of the function's codomain is the image of at least one element of its domain. It is not required that x be unique; the function f may map one or more elements of X to the same element of Y.

Comment
enIn mathematics, a surjective function (also known as surjection, or onto function) is a function f that every element y can be mapped from element x so that f(x) = y. In other words, every element of the function's codomain is the image of at least one element of its domain. It is not required that x be unique; the function f may map one or more elements of X to the same element of Y.
Depiction
Bijection.svg
Codomain2.svg
Injection.svg
Non-surjective function2.svg
Not-Injection-Surjection.svg
Surjection.svg
Surjective composition.svg
Surjective function.svg
Has abstract
enIn mathematics, a surjective function (also known as surjection, or onto function) is a function f that every element y can be mapped from element x so that f(x) = y. In other words, every element of the function's codomain is the image of at least one element of its domain. It is not required that x be unique; the function f may map one or more elements of X to the same element of Y. The term surjective and the related terms injective and bijective were introduced by Nicolas Bourbaki, a group of mainly French 20th-century mathematicians who, under this pseudonym, wrote a series of books presenting an exposition of modern advanced mathematics, beginning in 1935. The French word sur means over or above, and relates to the fact that the image of the domain of a surjective function completely covers the function's codomain. Any function induces a surjection by restricting its codomain to the image of its domain. Every surjective function has a right inverse assuming the axiom of choice, and every function with a right inverse is necessarily a surjection. The composition of surjective functions is always surjective. Any function can be decomposed into a surjection and an injection.
Is primary topic of
Surjective function
Label
enSurjective function
Link from a Wikipage to an external page
books.google.com/books%3Fid=7eclBQAAQBAJ&pg=PR1
Link from a Wikipage to another Wikipage
Axiom of choice
Bijection, injection and surjection
Bijective function
Cardinality
Cardinal number
Cartesian product
Category:Basic concepts in set theory
Category:Functions and mappings
Category:Mathematical relations
Category:Types of functions
Category (mathematics)
Category of sets
Codomain
Cover (algebra)
Covering map
Disjoint sets
Domain of a function
Elements of Mathematics
Enumeration
Epimorphism
Equivalence class
Equivalence relation
Even number
Exponential function
Fiber bundle
File:Codomain2.SVG
Finite set
France
Function (mathematics)
Function composition
Function graph
General linear group
Graph of a function
Group (mathematics)
Identity function
Image (mathematics)
Index set
Injective
Injective function
Integer
Inverse function
Invertible matrix
Left-total relation
Map (mathematics)
Mathematician
Mathematics
Matrix (mathematics)
Matrix exponential
Modular arithmetic
Morphism
Natural logarithm
Nicolas Bourbaki
Odd number
Partition of a set
Preimage
Projection (set theory)
Projection map
Quotient set
Real number
Restriction of a function
Right-cancellative
Right-total relation
Right-unique relation
Schröder–Bernstein theorem
Section (category theory)
Split epimorphism
Stirling numbers of the second kind
Subset
Twelvefold way
Unique (mathematics)
Wikt:sur
SameAs
2AWtw
Átæk vörpun
Fonzion suriettiva
Função sobrejectiva
Funció exhaustiva
Función sobreyectiva
Funcție surjectivă
Functio superiectiva
Fungsi surjektif
Funkcja „na”
Funtzio supraiektibo
Funzione suriettiva
m.01jz4t
Örten fonksiyon
Q229102
Siurjekcija
Subrejeccion
Surjectie
Surjection
Surjection
Surjective function
Surjective function
Surjeksjon
Surjektio
Surjektio
Surjektiv
Surjektive Funktion
Surjektiv funksjon
Surjektiv funktion
Surjektivna funkcija
Surjektivna funkcija
Surjektivna preslikava
Surjektívne zobrazenie
Surĵeto
Szürjekció
Toàn ánh
Zobrazení na
Επί
Сурјективна функција
Сурјективно пресликавање
Сюр'єкція
Сюрекция
Сюръектив функц
Сюръекция
Сюр’екцыя
פונקציה על
تابع پوشا
دالة شمولية
فانکشنی گشتگر
সার্বিক ফাংশন
முழுக்கோப்பு
ฟังก์ชันทั่วถึง
全射
满射
전사 함수
Subject
Category:Basic concepts in set theory
Category:Functions and mappings
Category:Mathematical relations
Category:Types of functions
Thumbnail
Codomain2.svg?width=300
WasDerivedFrom
Surjective function?oldid=1114836144&ns=0
WikiPageLength
18531
Wikipage page ID
27873
Wikipage revision ID
1114836144
WikiPageUsesTemplate
Template:=
Template:Cite book
Template:Commons category
Template:Details
Template:Em
Template:For
Template:Functions
Template:Gallery
Template:Math
Template:Mathematical logic
Template:Mvar
Template:Nowrap begin
Template:Nowrap end
Template:Redirect
Template:Reflist
Template:Short description
Template:Sub
Template:Unichar
Template:Wiktionary