
Exponential function
The exponential function is a mathematical function denoted by or (where the argument x is written as an exponent). Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras. The exponential function originated from the notion of exponentiation (repeated multiplication), but modern definitions (there are several equivalent characterizations) allow it to be rigorously extended to all real arguments, including irrational numbers. Its ubiquitous occurrence in pure and applied mathematics led mathematician Walter Rudin to opine that the exponential function is "the most important function in mathematics".
- Caption
- enThe natural exponential function along part of the real axis
- Comment
- enThe exponential function is a mathematical function denoted by or (where the argument x is written as an exponent). Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras. The exponential function originated from the notion of exponentiation (repeated multiplication), but modern definitions (there are several equivalent characterizations) allow it to be rigorously extended to all real arguments, including irrational numbers. Its ubiquitous occurrence in pure and applied mathematics led mathematician Walter Rudin to opine that the exponential function is "the most important function in mathematics".
- Cs1Dates
- eny
- Date
- enAugust 2019
- Depiction
- Em
- 1.50
- F
- Euler's number
- FieldsOfApplication
- enPure and applied mathematics
- Fixed
- enfor
- Group
- en"nb"
- Has abstract
- enThe exponential function is a mathematical function denoted by or (where the argument x is written as an exponent). Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras. The exponential function originated from the notion of exponentiation (repeated multiplication), but modern definitions (there are several equivalent characterizations) allow it to be rigorously extended to all real arguments, including irrational numbers. Its ubiquitous occurrence in pure and applied mathematics led mathematician Walter Rudin to opine that the exponential function is "the most important function in mathematics". The exponential function satisfies the exponentiation identity which, along with the definition , shows that for positive integers n, and relates the exponential function to the elementary notion of exponentiation. The base of the exponential function, its value at 1, , is a ubiquitous mathematical constant called Euler's number. While other continuous nonzero functions that satisfy the exponentiation identity are also known as exponential functions, the exponential function exp is the unique real-valued function of a real variable whose derivative is itself and whose value at 0 is 1; that is, for all real x, and Thus, exp is sometimes called the natural exponential function to distinguish it from these other exponential functions, which are the functions of the form where the base b is a positive real number. The relation for positive b and real or complex x establishes a strong relationship between these functions, which explains this ambiguous terminology. The real exponential function can also be defined as a power series. This power series definition is readily extended to complex arguments to allow the complex exponential function to be defined. The complex exponential function takes on all complex values except for 0 and is closely related to the complex trigonometric functions, as shown by Euler's formula. Motivated by more abstract properties and characterizations of the exponential function, the exponential can be generalized to and defined for entirely different kinds of mathematical objects (for example, a square matrix or a Lie algebra). In applied settings, exponential functions model a relationship in which a constant change in the independent variable gives the same proportional change (that is, percentage increase or decrease) in the dependent variable. This occurs widely in the natural and social sciences, as in a self-reproducing population, a fund accruing compound interest, or a growing body of manufacturing expertise. Thus, the exponential function also appears in a variety of contexts within physics, computer science, chemistry, engineering, mathematical biology, and economics. The real exponential function is a bijection from to . Its inverse function is the natural logarithm, denoted or because of this, some old texts refer to the exponential function as the antilogarithm.
- Id
- enp/e036910
- Imagealt
- enThe natural exponential function along part of the real axis
- Inverse
- Complex logarithm
- Is primary topic of
- Exponential function
- Label
- enExponential function
- Link from a Wikipage to another Wikipage
- Applied mathematics
- Asymptote
- Baker–Campbell–Hausdorff formula
- Banach algebra
- Berkeley UNIX 4.3BSD
- Bijection
- Binomial theorem
- C99
- Carlitz exponential
- Category:Analytic functions
- Category:E (mathematical constant)
- Category:Elementary special functions
- Category:Exponentials
- Category:Special hypergeometric functions
- Cauchy product
- Chain rule
- Characterization (mathematics)
- Characterizations of the exponential function
- Chemistry
- Complex logarithm
- Complex number
- Complex plane
- Computer algebra system
- Computer science
- Continued fraction
- Continuous function
- Continuously compounded interest
- Derivative
- Differential equation
- E (mathematical constant)
- Economics
- Engineering
- Entire function
- Euler's continued fraction formula
- Euler's formula
- Euler's number
- Exponential decay
- Exponential growth
- Exponential map (Lie theory)
- Exponentiation
- File:Animation of exponential function.gif
- File:Exp-complex-cplot.svg
- File:Exponenciala priklad.png
- File:Exp series.gif
- File:Exp tangent.svg
- File:The exponential function e%5Ez plotted in the complex plane from -2-2i to 2+2i.svg
- Fixed point (mathematics)
- Floating-point arithmetic
- Function (mathematics)
- Functional (mathematics)
- Gaussian function
- Generalized continued fraction
- Graph of a function
- Half-exponential function
- Hewlett-Packard
- Holomorphic function
- HP-41C
- Hyperbolic tangent
- Identity (mathematics)
- IEEE 754-2008
- Interest
- Inverse function
- Irrational number
- Jacob Bernoulli
- Johann Bernoulli
- Lacunary value
- Lambert W function
- Leonhard Euler
- Lie algebra
- Lie group
- Limit of a function
- Line (mathematics)
- List of exponential topics
- List of integrals of exponential functions
- Lnp1
- Logarithmic spiral
- Malthusian catastrophe
- Mathematical biology
- Mathematical constant
- Mathematical object
- Matrix (mathematics)
- Matrix exponential
- Mittag-Leffler function
- Moore's law
- Multivalued function
- Natural logarithm
- Operating system
- Origin (mathematics)
- Padé approximation
- Padé table for exponential function
- P-adic exponential function
- Physics
- Picard–Lindelöf theorem
- Picard theorem
- Population dynamics
- Power series
- Proportionality (mathematics)
- Pure mathematics
- Radioactive decay
- Radius of convergence
- Ratio test
- Real number
- Series (mathematics)
- Significant figures
- Slope
- Square matrix
- Tangent
- Taylor series
- Transcendental function
- Trigonometric functions
- Unit circle
- Walter Rudin
- William Kahan
- MotivationOfCreation
- enAnalytic proofs
- Name
- enExponential
- SameAs
- 4382956-9
- Argemmvac'henn
- Eksponencijalna funkcija
- Eksponencijalna funkcija
- Eksponencijalna funkcija
- Eksponensiële funksie
- Eksponensiyal na punsiyon
- Eksponenta funkcio
- Eksponentfunkcija
- Eksponentfunktsioon
- Eksponentialfunksjon
- Eksponentialfunksjon
- Eksponentialfunktion
- Eksponentinė funkcija
- Eksponentna funkcija
- Eksponenttifunktio
- Espuninziali
- ev8X
- Exponenciális függvény
- Exponenciálna funkcia
- Exponenciální funkce
- Exponentala
- Exponential function
- Exponentialfunktion
- Exponentialfunktion
- Exponentiële functie
- Exponentielle de base a
- Feidhm easpónantúil
- Fonction exponentielle
- Fonsion esponensial
- Fonzion esponenzial
- Função exponencial
- Função exponencial natural
- Funció exponencial
- Función exponencial
- Función exponencial
- Funcție exponențială
- Functio exponentialis
- Functio exponentialis generalis
- Fungsi eksponen
- Fungsi eksponensial
- Funkcja wykładnicza
- Funksioni eksponencial
- Funtzio esponentzial
- Funzione esponenziale
- Hàm mũ
- m.02mxh
- Natural exponential function
- Natürliche Exponentialfunktion
- Q168698
- Q47306354
- Üstel fonksiyon
- Veldisfall
- Εκθετική συνάρτηση
- Експонента (функція)
- Експоненциална функция
- Експоненцијална функција
- Експоненцијална функција
- Кăтартăшла функци
- Күрһәткесле функция
- Паказнікавая функцыя
- Показательная функция
- Показникова функція
- Экспонента
- Экспонента
- Экспонента
- Экспоненттік функция
- Էքսպոնենտ
- Ցուցչային ֆունկցիա
- אקספוננט
- פונקציה מעריכית
- تابع نمایی
- توضیحی فنکشن
- دالة أسية
- دالة أسية طبيعية
- فانکشنی توانی
- चरघातांकी फलन
- সূচক ফাংশন
- படிக்குறிச் சார்பு
- ฟังก์ชันเลขชี้กำลัง
- მაჩვენებლიანი ფუნქცია
- 底に関する指数函数
- 指数函数
- 指数関数
- 自然指数函数
- 지수 함수
- Subject
- Category:Analytic functions
- Category:E (mathematical constant)
- Category:Elementary special functions
- Category:Exponentials
- Category:Special hypergeometric functions
- Text
- en, but rather multivalued over integers
- Thumbnail
- Title
- enExponential function
- Vr
- 1
- WasDerivedFrom
- Exponential function?oldid=1121286472&ns=0
- WikiPageLength
- 43032
- Wikipage page ID
- 9678
- Wikipage revision ID
- 1121286472
- WikiPageUsesTemplate
- Template:=
- Template:About
- Template:Abs
- Template:Anchor
- Template:Annotated link
- Template:Authority control
- Template:Block indent
- Template:Calculus topics
- Template:Div col
- Template:Div col end
- Template:E (mathematical constant)
- Template:Em
- Template:Infobox mathematical function
- Template:Main
- Template:Math
- Template:Mvar
- Template:Pi
- Template:Portal
- Template:Reflist
- Template:Section link
- Template:Sfrac
- Template:Short description
- Template:Small
- Template:Space
- Template:Springer
- Template:Su
- Template:Sub
- Template:Sup
- Template:Use dmy dates
- Zero
- 1