
Positional notation
Positional notation (or place-value notation, or positional numeral system) usually denotes the extension to any base of the Hindu–Arabic numeral system (or decimal system). More generally, a positional system is a numeral system in which the contribution of a digit to the value of a number is the value of the digit multiplied by a factor determined by the position of the digit. In early numeral systems, such as Roman numerals, a digit has only one value: I means one, X means ten and C a hundred (however, the value may be negated if placed before another digit). In modern positional systems, such as the decimal system, the position of the digit means that its value must be multiplied by some value: in 555, the three identical symbols represent five hundreds, five tens, and five units, resp
- Comment
- enPositional notation (or place-value notation, or positional numeral system) usually denotes the extension to any base of the Hindu–Arabic numeral system (or decimal system). More generally, a positional system is a numeral system in which the contribution of a digit to the value of a number is the value of the digit multiplied by a factor determined by the position of the digit. In early numeral systems, such as Roman numerals, a digit has only one value: I means one, X means ten and C a hundred (however, the value may be negated if placed before another digit). In modern positional systems, such as the decimal system, the position of the digit means that its value must be multiplied by some value: in 555, the three identical symbols represent five hundreds, five tens, and five units, resp
- Depiction
- Has abstract
- enPositional notation (or place-value notation, or positional numeral system) usually denotes the extension to any base of the Hindu–Arabic numeral system (or decimal system). More generally, a positional system is a numeral system in which the contribution of a digit to the value of a number is the value of the digit multiplied by a factor determined by the position of the digit. In early numeral systems, such as Roman numerals, a digit has only one value: I means one, X means ten and C a hundred (however, the value may be negated if placed before another digit). In modern positional systems, such as the decimal system, the position of the digit means that its value must be multiplied by some value: in 555, the three identical symbols represent five hundreds, five tens, and five units, respectively, due to their different positions in the digit string. The Babylonian numeral system, base 60, was the first positional system to be developed, and its influence is present today in the way time and angles are counted in tallies related to 60, such as 60 minutes in an hour and 360 degrees in a circle. Today, the Hindu–Arabic numeral system (base ten) is the most commonly used system globally. However, the binary numeral system (base two) is used in almost all computers and electronic devices because it is easier to implement efficiently in electronic circuits. Systems with negative base, complex base or negative digits have been described. Most of them do not require a minus sign for designating negative numbers. The use of a radix point (decimal point in base ten), extends to include fractions and allows representing any real number with arbitrary accuracy. With positional notation, arithmetical computations are much simpler than with any older numeral system; this led to the rapid spread of the notation when it was introduced in western Europe.
- Hypernym
- Method
- Is primary topic of
- Positional notation
- Label
- enPositional notation
- Link from a Wikipage to an external page
- www-groups.dcs.st-and.ac.uk/~history/HistTopics/Babylonian_numerals.html
- web.archive.org/web/20140911192557/http:/www-groups.dcs.st-and.ac.uk/~history/HistTopics/Babylonian_numerals.html
- web.archive.org/web/20161109022004/http:/thedevtoolkit.com/tools/base_conversion
- books.google.com/books%3Fid=Plqf_OTz4ukC
- www.cut-the-knot.org/recurrence/conversion.shtml
- www.intuitor.com/counting/
- web.archive.org/web/20170204004954/http:/ultrastudio.org/en/MechengburakalkanApplet-1.7.zip
- web.archive.org/web/20160310032143/http:/ibrarian.net/navon/paper/the_development_of_hindu_arabic_and_traditional_c.pdf%3Fpaperid=1247217
- archive.org/details/unset0000unse_w3q2
- Link from a Wikipage to another Wikipage
- £sd
- 0.999...
- 1000 (number)
- 1 E0
- 1 E1
- 1 E-1
- 1 E2
- 1 E-2
- 20 (number)
- Abacus
- Absolute value
- Abu'l-Hasan al-Uqlidisi
- Africa
- African languages
- Algebraic number
- Algorism
- Al Khwarizmi
- Alphanumerics
- Arabic numerals
- Arbitrary-precision arithmetic
- Archimedes
- Arithmetic
- Australian Aboriginal languages
- Babylonian cuneiform numerals
- Babylonian numerals
- Babylonian Numerals
- Balanced ternary
- Balance problem
- Banda languages
- Base-20
- Base-60
- Base ten
- Bijective numeration
- Binary numeral system
- Binary-to-text encoding
- Brahmi numerals
- Carl Friedrich Gauss
- Category:Articles containing proofs
- Category:Mathematical notation
- Category:Positional numeral systems
- Central Africa
- Chinese remainder theorem
- Comma (punctuation)
- Complete metric space
- Complex number
- Computer
- Computing
- Counting rods
- Cut-the-knot
- Danish language
- Decimal
- Decimal calendar
- Decimal digit
- Decimalisation
- Decimal notation
- Decimal representation
- Decimal separator
- Decimal time
- Degree (angle)
- Dense set
- De Thiende
- Discrete valuation ring
- Divisor
- Duodecimal
- Dyola language
- E. J. Dijksterhuis
- Electronic circuit
- Electronic device
- Equality (mathematics)
- Euclidean division
- Exponentiation
- Exponentiation by squaring
- Eye of Horus
- Factorial
- Factorial number system
- Factorization
- File:Abacus 6.png
- File:Chounumerals.svg
- File:Positional notation glossary-en.svg
- File:Stevin-decimal notation.svg
- Finger
- Fourth (angle)
- Fraction (mathematics)
- French Revolution
- Full stop
- Gaulish language
- Greatest common divisor
- Greek numerals
- Guinea-Bissau
- Hebrew calendar
- Hellenistic
- Hexadecimal
- Hindu–Arabic numeral system
- Horner's method
- Immanuel Bonfils
- Indian numerals
- Integer
- Inuit languages
- Irish language
- Irrational number
- Irreducible fraction
- Jamshīd al-Kāshī
- Kaktovik, Alaska
- Kaktovik numerals
- Kala Lagaw Ya
- Khmer numerals
- List of numeral systems
- Localization (algebra)
- Logarithm
- Long division
- Lookup table
- Māori language
- Mathematical notation
- Maya civilization
- Mesoamerica
- Metrication
- Minute (angle)
- Mixed radix
- Multiplication
- Negative base
- Negative number
- Non-standard positional numeral systems
- Nth root
- Number
- Numeral system
- Numerical digit
- Octal
- Otto Neugebauer
- Papua New Guinea
- Pound Sterling
- Pre-Columbian
- Prime (symbol)
- Prime factor
- Prime number
- Proto-Indo European
- Quaternary numeral system
- Quinary
- Radix
- Radix point
- Rational number
- Real number
- Regiomontanus
- Renaissance
- Repeating decimal
- Residue number system
- Ring (mathematics)
- Rod numerals
- Roman numerals
- Scientific notation
- Second (angle)
- Semiring
- Series (mathematics)
- Sexagesimal
- Significant figures
- Sign-value notation
- Simon Stevin
- Sudan
- Sunzi Suanjing
- Symbol
- Synodic month
- Telefol language
- The Sand Reckoner
- Third (angle)
- Towers of Hanoi
- Transcendental number
- Uncountable
- Variable (mathematics)
- Vigesimal
- Vinculum (symbol)
- Welsh language
- Yuki tribe
- Zero
- SameAs
- Basamak (matematik)
- Helyiérték
- hT7x
- Kantalukujärjestelmä
- Kokapen-notazio
- m.028fdk
- Notação posicional
- Notación posicional
- Notación posicional
- Notación posicional
- Notació posicional
- Notasi posisional
- Notation positionnelle
- Notatio positionalis
- Notazione posizionale
- Paikkamerkintä
- Place value
- Posisjonssystem
- Positiestelsel
- Positionssystem
- Positionstalsystem
- Positsiooniline arvusüsteem
- Pozicia nombrosistemo
- Pozicionāls skaitļu pieraksts
- Poziciona notacija
- Pozičná číselná sústava
- Poziční číselná soustava
- Q1747853
- Q25457532
- Sistem de numerație pozițional
- Stellenwertsystem
- Systemy pozycyjne
- Θεσιακό σύστημα
- Пазіцыйная сістэма злічэння
- Позицион исәпләү системасы
- Позицион иҫәпләү системаһы
- Позиционная нотация
- Позиционная система счисления
- Позиційна нотація
- Позиційна система числення
- Санаудың позициялық жүйесі
- Հաշվարկման դիրքային համակարգ
- ارزش مکانی
- دلالة موضعية
- محلی ترقیم
- स्थानिक मान
- இடஞ்சார் குறியீடு
- პოზიციური კოდი
- 位取り記数法
- 进位制
- 위치 기수법
- Subject
- Category:Articles containing proofs
- Category:Mathematical notation
- Category:Positional numeral systems
- Thumbnail
- WasDerivedFrom
- Positional notation?oldid=1123663125&ns=0
- WikiPageLength
- 50360
- Wikipage page ID
- 437052
- Wikipage revision ID
- 1123663125
- WikiPageUsesTemplate
- Template:=
- Template:Anchor
- Template:Better source needed
- Template:Citation needed
- Template:Cite book
- Template:Cite journal
- Template:Cite web
- Template:Commons category
- Template:Expand section
- Template:Main
- Template:Math
- Template:Mset
- Template:Mvar
- Template:Numeral systems
- Template:Overline
- Template:Reflist
- Template:Rp
- Template:Short description
- Template:Smallcaps
- Template:Unreferenced section
- Template:Use dmy dates
- Template:Val