
Metropolis–Hastings algorithm
In statistics and statistical physics, the Metropolis–Hastings algorithm is a Markov chain Monte Carlo (MCMC) method for obtaining a sequence of random samples from a probability distribution from which direct sampling is difficult. This sequence can be used to approximate the distribution (e.g. to generate a histogram) or to compute an integral (e.g. an expected value). Metropolis–Hastings and other MCMC algorithms are generally used for sampling from multi-dimensional distributions, especially when the number of dimensions is high. For single-dimensional distributions, there are usually other methods (e.g. adaptive rejection sampling) that can directly return independent samples from the distribution, and these are free from the problem of autocorrelated samples that is inherent in MCMC
- Ability105616246
- Abstraction100002137
- Act100030358
- Activity100407535
- Algorithm105847438
- Cognition100023271
- Concept105835747
- Content105809192
- Event100029378
- Hypothesis105888929
- Idea105833840
- Know-how105616786
- Method105660268
- Model105890249
- Procedure101023820
- PsychologicalFeature100023100
- Rule105846932
- software
- StochasticProcess113561896
- WikicatAlgorithms
- WikicatMonteCarloMethods
- WikicatStatisticalAlgorithms
- WikicatStochasticProcesses
- YagoPermanentlyLocatedEntity
- Comment
- enIn statistics and statistical physics, the Metropolis–Hastings algorithm is a Markov chain Monte Carlo (MCMC) method for obtaining a sequence of random samples from a probability distribution from which direct sampling is difficult. This sequence can be used to approximate the distribution (e.g. to generate a histogram) or to compute an integral (e.g. an expected value). Metropolis–Hastings and other MCMC algorithms are generally used for sampling from multi-dimensional distributions, especially when the number of dimensions is high. For single-dimensional distributions, there are usually other methods (e.g. adaptive rejection sampling) that can directly return independent samples from the distribution, and these are free from the problem of autocorrelated samples that is inherent in MCMC
- Depiction
- Has abstract
- enIn statistics and statistical physics, the Metropolis–Hastings algorithm is a Markov chain Monte Carlo (MCMC) method for obtaining a sequence of random samples from a probability distribution from which direct sampling is difficult. This sequence can be used to approximate the distribution (e.g. to generate a histogram) or to compute an integral (e.g. an expected value). Metropolis–Hastings and other MCMC algorithms are generally used for sampling from multi-dimensional distributions, especially when the number of dimensions is high. For single-dimensional distributions, there are usually other methods (e.g. adaptive rejection sampling) that can directly return independent samples from the distribution, and these are free from the problem of autocorrelated samples that is inherent in MCMC methods.
- Hypernym
- Method
- Is primary topic of
- Metropolis–Hastings algorithm
- Label
- enMetropolis–Hastings algorithm
- Link from a Wikipage to an external page
- www.tandfonline.com/doi/abs/10.1080/03610918.2013.777455%23.VOk8J1PF9_c
- Link from a Wikipage to another Wikipage
- Adaptive rejection sampling
- American Statistician
- Arianna W. Rosenbluth
- Augusta H. Teller
- Autocorrelation
- Bernd A. Berg
- Bernstein-von Mises theorem
- Boltzmann distribution
- Category:Markov chain Monte Carlo
- Category:Monte Carlo methods
- Category:Statistical algorithms
- Curse of dimensionality
- Detailed balance
- Edward Teller
- Equation of state
- Equation of State Calculations by Fast Computing Machines
- Expected value
- File:3dRosenbrock.png
- File:Metropolis hastings algorithm.png
- Gaussian distribution
- Genetic algorithm
- Gibbs sampling
- Hamiltonian Monte Carlo
- Hierarchical Bayesian model
- Histogram
- Indicator function
- John von Neumann
- John Wiley & Sons
- MANIAC I
- Marginal distribution
- Markov chain
- Markov Chain
- Markov chain Monte Carlo
- Markov process
- Marshall Rosenbluth
- Mean-field particle methods
- Metropolis-adjusted Langevin algorithm
- Metropolis light transport
- Monte Carlo integration
- Multiple-try Metropolis
- Multivariate distribution
- Nicholas Metropolis
- Parallel tempering
- Particle filter
- Physical chemistry
- Preconditioned Crank–Nicolson algorithm
- Probability density
- Probability density function
- Probability distribution
- Pseudo-random number sampling
- Random variable
- Random walk
- Rejection sampling
- Sample (statistics)
- Siddhartha Chib
- Simulated annealing
- Slice sampling
- Stanisław Ulam
- Statistic
- Statistical mechanics
- Statistical physics
- Statistics
- W. K. Hastings
- World Scientific
- SameAs
- 53eDE
- Algorithme de Metropolis-Hastings
- Algoritmo de Metropolis-Hastings
- Algoritmo de Metropolis–Hastings
- Algoritmo di Metropolis-Hastings
- Algorytm Metropolisa-Hastingsa
- m.0fjyj
- Metropolis-Algorithmus
- Metropolisin ja Hastingsin algoritmi
- Metropolisův–Hastingsův algoritmus
- Monte Carlo reiknirit
- Q910810
- Алгоритм Метрополиса — Гастингса
- Алгоритм Метрополіса — Гастінгса
- Մետրոպոլիս-Հաստինգսի ալգորիթմ
- الگوریتم متروپلیس-هیستینگز
- メトロポリス・ヘイスティングス法
- 梅特罗波利斯-黑斯廷斯算法
- 메트로폴리스-헤이스팅스 알고리즘
- Subject
- Category:Markov chain Monte Carlo
- Category:Monte Carlo methods
- Category:Statistical algorithms
- Thumbnail
- WasDerivedFrom
- Metropolis–Hastings algorithm?oldid=1109974598&ns=0
- WikiPageLength
- 28346
- Wikipage page ID
- 56107
- Wikipage revision ID
- 1109974598
- WikiPageUsesTemplate
- Template:Clear
- Template:Efn
- Template:ISBN
- Template:Main
- Template:Notelist
- Template:Reflist
- Template:Short description