
Low-density parity-check code
In information theory, a low-density parity-check (LDPC) code is a linear error correcting code, a method of transmitting a message over a noisy transmission channel. An LDPC code is constructed using a sparse Tanner graph (subclass of the bipartite graph). LDPC codes are capacity-approaching codes, which means that practical constructions exist that allow the noise threshold to be set very close to the theoretical maximum (the Shannon limit) for a symmetric memoryless channel. The noise threshold defines an upper bound for the channel noise, up to which the probability of lost information can be made as small as desired. Using iterative belief propagation techniques, LDPC codes can be decoded in time linear to their block length.
- Abstraction100002137
- Act100030358
- Activity100407535
- Code106667317
- Communication100033020
- Cryptography100614489
- disease
- Encoding100615887
- Event100029378
- PsychologicalFeature100023100
- WikicatCapacity-approachingCodes
- WikicatEncodings
- Writing100614224
- WrittenCommunication106349220
- YagoPermanentlyLocatedEntity
- Comment
- enIn information theory, a low-density parity-check (LDPC) code is a linear error correcting code, a method of transmitting a message over a noisy transmission channel. An LDPC code is constructed using a sparse Tanner graph (subclass of the bipartite graph). LDPC codes are capacity-approaching codes, which means that practical constructions exist that allow the noise threshold to be set very close to the theoretical maximum (the Shannon limit) for a symmetric memoryless channel. The noise threshold defines an upper bound for the channel noise, up to which the probability of lost information can be made as small as desired. Using iterative belief propagation techniques, LDPC codes can be decoded in time linear to their block length.
- Date
- 28 February 2019
- Depiction
- Has abstract
- enIn information theory, a low-density parity-check (LDPC) code is a linear error correcting code, a method of transmitting a message over a noisy transmission channel. An LDPC code is constructed using a sparse Tanner graph (subclass of the bipartite graph). LDPC codes are capacity-approaching codes, which means that practical constructions exist that allow the noise threshold to be set very close to the theoretical maximum (the Shannon limit) for a symmetric memoryless channel. The noise threshold defines an upper bound for the channel noise, up to which the probability of lost information can be made as small as desired. Using iterative belief propagation techniques, LDPC codes can be decoded in time linear to their block length. LDPC codes are finding increasing use in applications requiring reliable and highly efficient information transfer over bandwidth-constrained or return-channel-constrained links in the presence of corrupting noise. Implementation of LDPC codes has lagged behind that of other codes, notably turbo codes. The fundamental patent for turbo codes expired on August 29, 2013. LDPC codes are also known as Gallager codes, in honor of Robert G. Gallager, who developed the LDPC concept in his doctoral dissertation at the Massachusetts Institute of Technology in 1960. LDPC codes have also been shown to have ideal combinatorial properties. In his dissertation, Gallager showed that LDPC codes achieve the Gilbert–Varshamov bound for linear codes over binary fields with high probability. In 2020 it was shown that Gallager's LDPC codes achieve list decoding capacity and also achieve the Gilbert–Varshamov bound for linear codes over general fields.
- Hypernym
- Error
- Is primary topic of
- Low-density parity-check code
- Label
- enLow-density parity-check code
- Link from a Wikipage to an external page
- arxiv.org/abs/cs/0610022
- aff3ct.github.io
- www.tsc.uc3m.es/~fernando/BP_LDPC.pdf
- www.inference.phy.cam.ac.uk/mackay/CodesFiles.html
- web.archive.org/web/20190228003946/https:/www.nt.tuwien.ac.at/wp-content/uploads/2016/10/DC2-16_Ch7_LDPC.pdf
- www.nt.tuwien.ac.at/wp-content/uploads/2016/10/DC2-16_Ch7_LDPC.pdf
- www.mathworks.com/help/comm/examples/dvb-s-2-link-including-ldpc-coding.html%3Fs_tid=srchtitle
- web.archive.org/web/20090217170744/http:/www.mathworks.com/access/helpdesk/help/toolbox/comm/ref/fec.ldpcdec.html
- web.archive.org/web/20090926035703/http:/www.mathworks.com/access/helpdesk/help/toolbox/comm/ref/fec.ldpcenc.html
- freshmeat.net/projects/pycodes/
- www.inference.phy.cam.ac.uk/mackay/itila/
- bernh.net/media/download/papers/ldpc.pdf
- www.cs.utoronto.ca/~radford/ldpc.software.html
- www.ics.uci.edu/~welling/teaching/ICS279/LPCD.pdf
- www5.tu-ilmenau.de/nt/de/teachings/vorlesungen/itsc_master/folien/script.pdf
- sigpromu.org/sarah/SJohnsonLDPCintro.pdf
- community.wvu.edu/~mcvalenti/documents/TurboLDPCTutorial.pdf
- Link from a Wikipage to another Wikipage
- 10GBASE-T
- 10 Gigabit Ethernet
- 3GPP
- 5G NR
- 802.11ac
- 802.11ax
- 802.11n
- 802.3an
- ATSC 3.0
- BCH code
- BCJR algorithm
- Belief propagation
- Binary erasure channel
- Binary symmetric channel
- Bipartite graph
- Bit error rate
- C (programming language)
- C++11
- Category:Capacity-approaching codes
- Category:Coding theory
- Category:Error detection and correction
- Circulant matrix
- Claude Shannon
- Cliff effect
- CMMB
- Code rate
- David J.C. MacKay
- David J. C. MacKay
- Decoding methods
- Deep Space Network
- Digital television
- DOCSIS
- DVB-C2
- DVB-S2
- DVB-T2
- Error correcting code
- Error floor
- EXIT chart
- Expander code
- Factor graph
- File:Ldpc code fragment factor graph.svg
- File:Ldpc code fragment factor graph w erasures decode step 2.svg
- File:LDPC encoder Figure.png
- Finite geometry
- Forward error correction
- Fountain codes
- G.hn
- Generator matrix
- GF(2)
- Gilbert–Varshamov bound for linear codes
- Graph theory
- H
- Hamming code
- IEEE 802.11n-2009
- Information theory
- Irving S. Reed
- ITU-T
- Linear code
- List decoding
- Log-likelihood ratio
- LT codes
- Massachusetts Institute of Technology
- MATLAB
- Maximum a posteriori estimation
- Maximum likelihood decoding
- Michael Luby
- Modular arithmetic
- NP-complete
- OFDM
- Online codes
- Parity-check matrix
- Polar code (coding theory)
- Python (programming language)
- Raptor codes
- Real number
- Reed-Solomon code
- Reed–Solomon code
- Repeat-accumulate code
- Richard Hamming
- Robert G. Gallager
- Row operations
- Satellite communication
- Serial concatenated convolutional codes
- Shannon-Hartley theorem
- Signal noise
- Soft-in soft-out decoder
- Soft output Viterbi algorithm
- Sparse graph code
- Sparse matrix
- Sparsity
- SSD
- Tanner graph
- Tornado code
- Turbo code
- Wi-Fi
- WiMAX
- SameAs
- Codes de parité à faible densité
- Codi de verificació de paritat de baixa densitat
- LDPC
- LDPC
- LDPC
- LDPC
- Low-density parity-check code
- Low-density parity-check code
- Low-density parity-check code
- Low-Density-Parity-Check-Code
- m.02kkvw
- Nízkohustotní kód s kontrolou parity
- oi4X
- Q187444
- Код с малой плотностью проверок на чётность
- קוד LDPC
- 低密度パリティ検査符号
- 低密度奇偶檢查碼
- Subject
- Category:Capacity-approaching codes
- Category:Coding theory
- Category:Error detection and correction
- Thumbnail
- Url
- DC2-16 Ch7 LDPC.pdf
- WasDerivedFrom
- Low-density parity-check code?oldid=1122863678&ns=0
- WikiPageLength
- 30646
- Wikipage page ID
- 516393
- Wikipage revision ID
- 1122863678
- WikiPageUsesTemplate
- Template:CCSDS
- Template:Reflist
- Template:Short description
- Template:Use American English
- Template:Use mdy dates
- Template:Webarchive