Existential quantification
In predicate logic, an existential quantification is a type of quantifier, a logical constant which is interpreted as "there exists", "there is at least one", or "for some". It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier ("∃x" or "∃(x)" or "(∃x)"). Existential quantification is distinct from universal quantification ("for all"), which asserts that the property or relation holds for all members of the domain. Some sources use the term existentialization to refer to existential quantification.
- Comment
- enIn predicate logic, an existential quantification is a type of quantifier, a logical constant which is interpreted as "there exists", "there is at least one", or "for some". It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier ("∃x" or "∃(x)" or "(∃x)"). Existential quantification is distinct from universal quantification ("for all"), which asserts that the property or relation holds for all members of the domain. Some sources use the term existentialization to refer to existential quantification.
- Field
- Mathematical logic
- Has abstract
- enIn predicate logic, an existential quantification is a type of quantifier, a logical constant which is interpreted as "there exists", "there is at least one", or "for some". It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier ("∃x" or "∃(x)" or "(∃x)"). Existential quantification is distinct from universal quantification ("for all"), which asserts that the property or relation holds for all members of the domain. Some sources use the term existentialization to refer to existential quantification.
- Hypernym
- Quantifier
- Is primary topic of
- Existential quantification
- Label
- enExistential quantification
- Link from a Wikipage to another Wikipage
- Category:Logic symbols
- Category:Quantifier (logic)
- Category theory
- Constructive proof
- De Morgan's laws
- Domain of discourse
- E
- Elementary topos
- Empty set
- Even number
- Existence theorem
- Existential clause
- Existential elimination
- Existential generalization
- First-order logic
- Formal logic
- Functor
- Interpretation (logic)
- Inverse image
- Left adjoint
- Lindström quantifier
- List of logic symbols
- Logical conjunction
- Logical connective
- Logical constant
- Logical disjunction
- Logically equivalent
- Logical truth
- Mathematical logic
- Mathematical proof
- Natural number
- Nonconstructive proof
- Power set
- Predicate logic
- Propositional function
- Quantification (logic)
- Quantifier (logic)
- Quantifier variance
- Right adjoint
- Rule of inference
- Sans-serif
- Set (mathematics)
- Solution (equation)
- Symbol (formal)
- TeX
- Uniqueness quantification
- Universal quantification
- Universal quantifier
- Vacuous truth
- Name
- enExistential quantification
- SameAs
- 4153313-6
- 4w6Bt
- Cuantificador existencial
- Eksistenskvantor
- Eksistenssikvanttori
- Ekzista kvantizanto
- Existence quantifier
- Existenční kvantifikátor
- Existenčný kvantifikátor
- Existenskvantifikator
- Existential quantification
- Existentie
- Existenzaussage
- Kuantifikasi eksistensial
- Kwantyfikator egzystencjalny
- m.0mpxq
- Olemasolukvantor
- Q773483
- Quantificação existencial
- Quantificador existencial
- Quantification existentielle
- Quantificatore esistenziale (simbolo)
- Квантор существования
- Квантор існування
- Գոյության քվանտոր
- سور وجودی
- ตัวบ่งปริมาณสำหรับตัวมีจริง
- 存在記号
- 存在量化
- 존재 양화사
- Statement
- enis true when is true for at least one value of .
- Subject
- Category:Logic symbols
- Category:Quantifier (logic)
- Type
- Quantification (logic)
- WasDerivedFrom
- Existential quantification?oldid=1124223240&ns=0
- WikiPageLength
- 10869
- Wikipage page ID
- 91420
- Wikipage revision ID
- 1124223240
- WikiPageUsesTemplate
- Template:Cite book
- Template:Common logical symbols
- Template:Infobox mathematical statement
- Template:Main
- Template:Math
- Template:Mathematical logic
- Template:Redirect
- Template:Short description
- Template:Transformation rules
- Template:Unichar