
D'Alembert's principle
D'Alembert's principle is another way of formulating Newton's second law of motion.The principle has been defined as "the negative of the product of mass times acceleration. If this force is added to the impressed force there is equilibrium, which means that the principle of virtual work is satisfied." It constitutes an extension of the principle of virtual work from static to dynamical systems.
- Comment
- enD'Alembert's principle is another way of formulating Newton's second law of motion.The principle has been defined as "the negative of the product of mass times acceleration. If this force is added to the impressed force there is equilibrium, which means that the principle of virtual work is satisfied." It constitutes an extension of the principle of virtual work from static to dynamical systems.
- Date
- enOctober 2020
- Depiction
- Has abstract
- enD'Alembert's principle is another way of formulating Newton's second law of motion.The principle has been defined as "the negative of the product of mass times acceleration. If this force is added to the impressed force there is equilibrium, which means that the principle of virtual work is satisfied." It constitutes an extension of the principle of virtual work from static to dynamical systems. The principle does not apply to irreversible displacements, such as sliding friction, and more general specification of the irreversibility is required. D'Alembert's principle is more general than Hamilton's principle as it is not restricted to holonomic constraints that depend only on coordinates and time but not on velocities.
- Is primary topic of
- D'Alembert's principle
- Label
- enD'Alembert's principle
- Link from a Wikipage to another Wikipage
- Category:Classical mechanics
- Category:Dynamical systems
- Category:Lagrangian mechanics
- Category:Principles
- D'Alembert's equation
- D'Alembert operator
- Derivative
- Dynamical system
- File:Alembert.jpg
- File:Alembert d' – Traité de dynamique, 1743 – BEIC 15685.jpg
- Force
- Friction
- Gauss's principle of least constraint
- Generalized forces
- Hamilton's principle
- Holonomic constraint
- Inertial force
- Inertial torque
- Joseph Louis Lagrange
- Momentum
- Principle of virtual work
- Statics
- Virtual displacement
- Virtual work
- Reason
- ensee Talk:D'Alembert's principle
- SameAs
- 4uV2u
- D'Alembert's principle
- D'Alembertovo načelo
- D'Alemberts princip
- D'Alemberts prinsipp
- D'Alembertův princip
- Dʼalamber prinsipi
- D’Alembert-elv
- D’Alembertsches Prinzip
- m.02hs7l
- Parimi i D'Alembertit
- Principe de D'Alembert
- Principi de d'Alembert
- Principio de d'Alembert
- Princípio de d'Alembert
- Principio di D'Alembert
- Q753007
- Zasada d’Alemberta
- Д’Аламбер принципі
- Лагранж-Даламберов принцип
- Принцип д'Аламбера — Лагранжа
- Принцип д’Аламбера
- Դ'Ալամբերի սկզբունք
- עקרון ד'אלמבר
- اصل دالامبر
- مبدأ دالمبير
- दालाँवेयर का सिद्धान्त
- డీఅలంబర్ట్ సూత్రము
- หลักการดาล็องแบร์
- ダランベールの原理
- 達朗貝爾原理
- 달랑베르의 원리
- Subject
- Category:Classical mechanics
- Category:Dynamical systems
- Category:Lagrangian mechanics
- Category:Principles
- Thumbnail
- WasDerivedFrom
- D'Alembert's principle?oldid=1110186152&ns=0
- WikiPageLength
- 12317
- Wikipage page ID
- 499429
- Wikipage revision ID
- 1110186152
- WikiPageUsesTemplate
- Template:Clarify
- Template:Classical mechanics
- Template:Distinguish
- Template:Short description