Autoencoder

Autoencoder

An autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled data (unsupervised learning). The encoding is validated and refined by attempting to regenerate the input from the encoding. The autoencoder learns a representation (encoding) for a set of data, typically for dimensionality reduction, by training the network to ignore insignificant data (“noise”).

Comment
enAn autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled data (unsupervised learning). The encoding is validated and refined by attempting to regenerate the input from the encoding. The autoencoder learns a representation (encoding) for a set of data, typically for dimensionality reduction, by training the network to ignore insignificant data (“noise”).
Cs1Dates
eny
Date
enMarch 2020
Depiction
Autoencoder schema.png
Autoencoder sparso.png
Autoencoder structure.png
PCA vs Linear Autoencoder.png
Reconstruction autoencoders vs PCA.png
DifferentFrom
Autocode
Autocoder
Has abstract
enAn autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled data (unsupervised learning). The encoding is validated and refined by attempting to regenerate the input from the encoding. The autoencoder learns a representation (encoding) for a set of data, typically for dimensionality reduction, by training the network to ignore insignificant data (“noise”). Variants exist, aiming to force the learned representations to assume useful properties. Examples are regularized autoencoders (Sparse, Denoising and Contractive), which are effective in learning representations for subsequent classification tasks, and Variational autoencoders, with applications as generative models. Autoencoders are applied to many problems, including facial recognition, feature detection, anomaly detection and acquiring the meaning of words. Autoencoders are also generative models which can randomly generate new data that is similar to the input data (training data).
Hypernym
Network
Is primary topic of
Autoencoder
Label
enAutoencoder
Link from a Wikipage to another Wikipage
Activation function
Additive white Gaussian noise
Alzheimer's disease
Anomaly detection
Artificial intelligence
Artificial neural network
Backpropagation
Breast cancer
Categorical distribution
Category:Dimension reduction
Category:Neural network architectures
Category:Unsupervised learning
Data compression
Deep belief network
Deep learning
Dimensionality reduction
Empirical measure
Face recognition
Feature learning
File:Autoencoder schema.png
File:Autoencoder sparso.png
File:Autoencoder structure.png
File:PCA vs Linear Autoencoder.png
File:Reconstruction autoencoders vs PCA.png
Frobenius norm
Generative model
Geoffrey Hinton
Gradient descent
Hash table
Identity function
Image compression
Image denoising
Information retrieval
Jacobian matrix and determinant
JPEG 2000
Kullback–Leibler divergence
Language
Latent variable
Least squares
Linguistic
Machine translation
Medical imaging
MRI
Multilayer perceptron
Neural machine translation
Principal component analysis
Rectified linear unit
Rectifier (neural networks)
Relaxation (approximation)
Representation learning
Restricted Boltzmann machine
Russ Salakhutdinov
Sigmoid function
Singular value decomposition
Sparse coding
Sparse dictionary learning
Statistical classification
Super-resolution
Transformer (machine learning model)
Unsupervised learning
Variational autoencoder
Variational Bayesian methods
SameAs
4wHva
Autocodificatore
Autoencoder
Autoencoder
Autoencoder
Autoencoder
Auto-encodeur
Bộ tự mã hóa
m.0grsv6
Otokodlayıcı
Q786435
Автокодировщик
Автокодувальник
خودرمزگذار
オートエンコーダ
自编码器
오토인코더
Subject
Category:Dimension reduction
Category:Neural network architectures
Category:Unsupervised learning
Thumbnail
Autoencoder schema.png?width=300
WasDerivedFrom
Autoencoder?oldid=1120107812&ns=0
WikiPageLength
40553
Wikipage page ID
6836612
Wikipage revision ID
1120107812
WikiPageUsesTemplate
Template:Differentiable computing
Template:Distinguish
Template:Machine learning
Template:Main
Template:Noise
Template:Reflist
Template:Short description
Template:Toclimit
Template:Use dmy dates