Asymptotic computational complexity
In computational complexity theory, asymptotic computational complexity is the usage of asymptotic analysis for the estimation of computational complexity of algorithms and computational problems, commonly associated with the usage of the big O notation.
- Comment
- enIn computational complexity theory, asymptotic computational complexity is the usage of asymptotic analysis for the estimation of computational complexity of algorithms and computational problems, commonly associated with the usage of the big O notation.
- Has abstract
- enIn computational complexity theory, asymptotic computational complexity is the usage of asymptotic analysis for the estimation of computational complexity of algorithms and computational problems, commonly associated with the usage of the big O notation.
- Hypernym
- Usage
- Is primary topic of
- Asymptotic computational complexity
- Label
- enAsymptotic computational complexity
- Link from a Wikipage to another Wikipage
- Algorithm
- Analysis of algorithms
- Asymptotically optimal algorithm
- Asymptotic analysis
- Big O notation
- Big Theta
- Category:Computational complexity theory
- Circuit complexity
- Computational complexity theory
- Computational problem
- Computational resource
- David S. Johnson
- Deterministic algorithm
- Juris Hartmanis
- Lower bound
- Michael Garey
- Models of computation
- Nondeterministic algorithm
- NP-completeness
- Parallel computation
- Probabilistic analysis of algorithms
- Randomized algorithm
- Richard E. Stearns
- Space complexity
- Tacit assumption
- Theoretical computer science
- Time complexity
- Upper bound
- Worst case analysis
- SameAs
- Asimptotska složenost (računarstvo)
- Asymptoottinen suoritusaika
- m.03m6hmv
- MecS
- Q13414364
- پیچیدگی محاسباتی مجانبی
- Subject
- Category:Computational complexity theory
- WasDerivedFrom
- Asymptotic computational complexity?oldid=993888102&ns=0
- WikiPageLength
- 2589
- Wikipage page ID
- 15374087
- Wikipage revision ID
- 993888102
- WikiPageUsesTemplate
- Template:Reflist