8074 |
Creator |
80b473f9888b354bf7fee26ec7cc369f |
8074 |
Creator |
c63396a7fbb007ccb76080db8037c860 |
8074 |
Creator |
f393ad9d9dd1e6eec38485aebdeb7e02 |
8074 |
Creator |
ext-1f1113af57fce578ae004dc8cd5d1fc1 |
8074 |
Date |
2006-04 |
8074 |
Is Part Of |
p0012365X |
8074 |
Is Part Of |
repository |
8074 |
abstract |
Orientable triangular embeddings of the complete tripartite graph Kn,n,n correspond
to biembeddings of Latin squares. We show that if n is prime there are at least enlnn-n(1+o(1))
nonisomorphic biembeddings of cyclic Latin squares of order n. If n=kp, where p is
a large prime number, then the number of nonisomorphic biembeddings of cyclic Latin
squares of order n is at least eplnp-p(1+lnk+o(1)). Moreover, we prove that for every
n there is a unique regular triangular embedding of Kn,n,n in an orientable surface. |
8074 |
authorList |
authors |
8074 |
issue |
6 |
8074 |
status |
peerReviewed |
8074 |
volume |
306 |
8074 |
type |
AcademicArticle |
8074 |
type |
Article |
8074 |
label |
Grannell, M. J. ; Griggs, T. S. ; Knor, M. and Siran, J. (2006). Triangulations
of orientable surfaces by complete tripartite graphs. Discrete Mathematics, 306(6)
pp. 600–606. |
8074 |
label |
Grannell, M. J. ; Griggs, T. S. ; Knor, M. and Siran, J. (2006). Triangulations
of orientable surfaces by complete tripartite graphs. Discrete Mathematics, 306(6)
pp. 600–606. |
8074 |
Title |
Triangulations of orientable surfaces by complete tripartite graphs |
8074 |
in dataset |
oro |