subject predicate object context
8074 Creator 80b473f9888b354bf7fee26ec7cc369f
8074 Creator c63396a7fbb007ccb76080db8037c860
8074 Creator f393ad9d9dd1e6eec38485aebdeb7e02
8074 Creator ext-1f1113af57fce578ae004dc8cd5d1fc1
8074 Date 2006-04
8074 Is Part Of p0012365X
8074 Is Part Of repository
8074 abstract Orientable triangular embeddings of the complete tripartite graph Kn,n,n correspond to biembeddings of Latin squares. We show that if n is prime there are at least enlnn-n(1+o(1)) nonisomorphic biembeddings of cyclic Latin squares of order n. If n=kp, where p is a large prime number, then the number of nonisomorphic biembeddings of cyclic Latin squares of order n is at least eplnp-p(1+lnk+o(1)). Moreover, we prove that for every n there is a unique regular triangular embedding of Kn,n,n in an orientable surface.
8074 authorList authors
8074 issue 6
8074 status peerReviewed
8074 volume 306
8074 type AcademicArticle
8074 type Article
8074 label Grannell, M. J. ; Griggs, T. S. ; Knor, M. and Siran, J. (2006). Triangulations of orientable surfaces by complete tripartite graphs. Discrete Mathematics, 306(6) pp. 600–606.
8074 label Grannell, M. J. ; Griggs, T. S. ; Knor, M. and Siran, J. (2006). Triangulations of orientable surfaces by complete tripartite graphs. Discrete Mathematics, 306(6) pp. 600–606.
8074 Title Triangulations of orientable surfaces by complete tripartite graphs
8074 in dataset oro