72758 |
Creator |
7886d8a8c9204366c84d0d91a5a53953 |
72758 |
Creator |
ext-0993761fcae826a750b423b2b0d20bbb |
72758 |
Creator |
ext-0f91b42e94551b8f5e3bb2dcd33b1204 |
72758 |
Creator |
ext-21e25129f97f1c71de8cf8cda309be01 |
72758 |
Creator |
ext-2593d891e04448d55154de184a41c52e |
72758 |
Creator |
ext-2ce91cdf0e17122a9ac8259324f21559 |
72758 |
Creator |
ext-3927376153ad4804e4ec56097b422901 |
72758 |
Creator |
ext-45a158d881ef9351cdf3783477d60f5c |
72758 |
Creator |
ext-487e7cae626ded901f1cc1a0b04d726d |
72758 |
Creator |
ext-5c0cda0b0a16912ea9b7e16d5e8784d3 |
72758 |
Creator |
ext-64d69300bea87ab44d42f6d80e94fa43 |
72758 |
Creator |
ext-6b8aabbff9db0fd354d0bb9ea27e2052 |
72758 |
Creator |
ext-82c6a2de4212863f72d077a8f0e5d2b3 |
72758 |
Creator |
ext-8ebf0c3b76a5a190d2d46495dde47b28 |
72758 |
Creator |
ext-937b43f656c3be62ca354e925dfe7bb6 |
72758 |
Creator |
ext-af02dbf3bec7564588a35747a5230d6a |
72758 |
Creator |
ext-af50b6fc9b0d161d9ee065995b725056 |
72758 |
Creator |
ext-b349f27c88809fd6004da70e2a1d1f62 |
72758 |
Creator |
ext-c9e134037db0fbf166b9623a374764d5 |
72758 |
Creator |
ext-cb88f1e0afd7b4f05a87fce3e08bb5f3 |
72758 |
Creator |
ext-d2583e2319ef28155805bd5449cee34d |
72758 |
Creator |
ext-d3ef5d9b4d806768b04734c6628c8e21 |
72758 |
Creator |
ext-e9b693d060100c330830f81bc59fa0ce |
72758 |
Date |
2020-12-09 |
72758 |
Is Part Of |
repository |
72758 |
Is Part Of |
p10974199 |
72758 |
abstract |
Extrasynaptic actions of glutamate are limited by high-affinity transporters expressed
by perisynaptic astroglial processes (PAPs): this helps maintain point-to-point transmission
in excitatory circuits. Memory formation in the brain is associated with synaptic
remodeling, but how this affects PAPs and therefore extrasynaptic glutamate actions
is poorly understood. Here, we used advanced imaging methods, <i>in situ</i> and <i>in vivo</i>,
to find that a classical synaptic memory mechanism, long-term potentiation (LTP),
triggers withdrawal of PAPs from potentiated synapses. Optical glutamate sensors combined
with patch-clamp and 3D molecular localization reveal that LTP induction thus prompts
spatial retreat of astroglial glutamate transporters, boosting glutamate spillover
and NMDA-receptor-mediated inter-synaptic cross-talk. The LTP-triggered PAP withdrawal
involves NKCC1 transporters and the actin-controlling protein cofilin but does not
depend on major Ca<sup>2+</sup> -dependent cascades in astrocytes. We have therefore
uncovered a mechanism by which a memory trace at one synapse could alter signal handling
by multiple neighboring connections. |
72758 |
authorList |
authors |
72758 |
status |
published |
72758 |
status |
peerReviewed |
72758 |
uri |
http://data.open.ac.uk/oro/document/1244617 |
72758 |
uri |
http://data.open.ac.uk/oro/document/1244626 |
72758 |
uri |
http://data.open.ac.uk/oro/document/1251180 |
72758 |
uri |
http://data.open.ac.uk/oro/document/1251181 |
72758 |
uri |
http://data.open.ac.uk/oro/document/1251182 |
72758 |
uri |
http://data.open.ac.uk/oro/document/1251183 |
72758 |
uri |
http://data.open.ac.uk/oro/document/1251184 |
72758 |
uri |
http://data.open.ac.uk/oro/document/1251185 |
72758 |
uri |
http://data.open.ac.uk/oro/document/1251525 |
72758 |
volume |
108 |
72758 |
type |
AcademicArticle |
72758 |
type |
Article |
72758 |
label |
Henneberger, Christian; Bard, Lucie; Panatier, Aude; Reynolds, James P; Kopach, Olga;
Medvedev, Nikolay I; Minge, Daniel; Herde, Michel K; Anders, Stefanie; Kraev, Igor;
Heller, Janosch P; Rama, Sylvain; Zheng, Kaiyu; Jensen, Thomas P; Sanchez-Romero,
Inmaculada; Jackson, Colin J; Janovjak, Harald; Ottersen, Ole Petter; Nagelhus, Erlend
Arnulf; Oliet, Stephane H R; Stewart, Michael G ; Nägerl, U Valentin and Rusakov,
Dmitri A (2020). LTP Induction Boosts Glutamate Spillover by Driving Withdrawal of
Perisynaptic Astroglia. Neuron, 108 |
72758 |
Title |
LTP Induction Boosts Glutamate Spillover by Driving Withdrawal of Perisynaptic Astroglia. |
72758 |
in dataset |
oro |