subject predicate object context
44613 Creator 80b473f9888b354bf7fee26ec7cc369f
44613 Creator ext-8d4bacabb49582066a395e51c1df1576
44613 Date 2015-05-14
44613 Is Part Of p10778926
44613 Is Part Of repository
44613 abstract It is shown that for $v\equiv 1$ or 3 (mod 6), every pair of Heffter difference sets modulo $v$ gives rise to a biembedding of two 2-rotational Steiner triple systems of order 2v+1 in a nonorientable surface.
44613 authorList authors
44613 issue 2
44613 status peerReviewed
44613 uri http://data.open.ac.uk/oro/document/361418
44613 uri http://data.open.ac.uk/oro/document/361419
44613 uri http://data.open.ac.uk/oro/document/361420
44613 uri http://data.open.ac.uk/oro/document/361421
44613 uri http://data.open.ac.uk/oro/document/361422
44613 uri http://data.open.ac.uk/oro/document/361423
44613 uri http://data.open.ac.uk/oro/document/361424
44613 uri http://data.open.ac.uk/oro/document/361425
44613 uri http://data.open.ac.uk/oro/document/361426
44613 uri http://data.open.ac.uk/oro/document/361427
44613 uri http://data.open.ac.uk/oro/document/361428
44613 uri http://data.open.ac.uk/oro/document/361429
44613 uri http://data.open.ac.uk/oro/document/361850
44613 uri http://data.open.ac.uk/oro/document/362836
44613 volume 22
44613 type AcademicArticle
44613 type Article
44613 label Grannell, Mike and Schroeder, Justin (2015). Biembeddings of 2-rotational Steiner triple systems. Electronic Journal of Combinatorics, 22(2), article no. P2.23.
44613 label Grannell, Mike and Schroeder, Justin (2015). Biembeddings of 2-rotational Steiner triple systems. Electronic Journal of Combinatorics, 22(2), article no. P2.23.
44613 Title Biembeddings of 2-rotational Steiner triple systems
44613 in dataset oro