Injective function
In mathematics, an injective function (also known as injection, or one-to-one function) is a function f that maps distinct elements of its domain to distinct elements; that is, f(x1) = f(x2) implies x1 = x2. (Equivalently, x1 ≠ x2 implies f(x1) ≠ f(x2) in the equivalent contrapositive statement.) In other words, every element of the function's codomain is the image of at most one element of its domain. The term one-to-one function must not be confused with one-to-one correspondence that refers to bijective functions, which are functions such that each element in the codomain is an image of exactly one element in the domain.
- Comment
- enIn mathematics, an injective function (also known as injection, or one-to-one function) is a function f that maps distinct elements of its domain to distinct elements; that is, f(x1) = f(x2) implies x1 = x2. (Equivalently, x1 ≠ x2 implies f(x1) ≠ f(x2) in the equivalent contrapositive statement.) In other words, every element of the function's codomain is the image of at most one element of its domain. The term one-to-one function must not be confused with one-to-one correspondence that refers to bijective functions, which are functions such that each element in the codomain is an image of exactly one element in the domain.
- Depiction
- Has abstract
- enIn mathematics, an injective function (also known as injection, or one-to-one function) is a function f that maps distinct elements of its domain to distinct elements; that is, f(x1) = f(x2) implies x1 = x2. (Equivalently, x1 ≠ x2 implies f(x1) ≠ f(x2) in the equivalent contrapositive statement.) In other words, every element of the function's codomain is the image of at most one element of its domain. The term one-to-one function must not be confused with one-to-one correspondence that refers to bijective functions, which are functions such that each element in the codomain is an image of exactly one element in the domain. A homomorphism between algebraic structures is a function that is compatible with the operations of the structures. For all common algebraic structures, and, in particular for vector spaces, an injective homomorphism is also called a monomorphism. However, in the more general context of category theory, the definition of a monomorphism differs from that of an injective homomorphism. This is thus a theorem that they are equivalent for algebraic structures; see Homomorphism § Monomorphism for more details. A function that is not injective is sometimes called many-to-one.
- Hypernym
- Function
- Is primary topic of
- Injective function
- Label
- enInjective function
- Link from a Wikipage to an external page
- jeff560.tripod.com/i.html
- www.khanacademy.org/math/linear-algebra/v/surjective--onto--and-injective--one-to-one--functions
- Link from a Wikipage to another Wikipage
- Algebraic structure
- Axiom of choice
- Bijective function
- Cantor–Bernstein–Schroeder theorem
- Cardinal number
- Cartesian plane
- Category:Basic concepts in set theory
- Category:Functions and mappings
- Category:Types of functions
- Category of sets
- Category theory
- Codomain
- Constructive mathematics
- Contraposition
- Distinct (mathematics)
- Domain of a function
- Element (mathematics)
- Embedding
- Empty function
- Empty set
- Exponential function
- File:Injection.svg
- File:Injective composition2.svg
- Finite set
- Function (mathematics)
- Homomorphism
- Horizontal line test
- Identity function
- Image (function)
- Image (mathematics)
- Inclusion function
- Inclusion map
- Indecomposability (constructive mathematics)
- Inverse function
- John Wiley & Sons
- Map (mathematics)
- Mathematical intuition
- Mathematics
- Monomorphism
- Naive Set Theory (book)
- Natural logarithm
- Partial bijection
- Partial function
- Range of a function
- Real line
- Retract (category theory)
- Singleton set
- Subset
- Up to isomorphism
- Vector space
- SameAs
- Birebir fonksiyon
- Disĵeto
- Eintæk vörpun
- Fonzion iniettiva
- Função injectiva
- Funció injectiva
- Función inyectiva
- Funciono injektiva
- Funcție injectivă
- Functio iniectiva
- Fungsi injektif
- Funkcja różnowartościowa
- Funtzio injektibo
- Funzione iniettiva
- Injeccion (matematicas)
- Injectie (wiskunde)
- Injection (mathematica)
- Injection (mathématiques)
- Injective function
- Injective function
- Injekcija (matematika)
- Injeksjon i matematikk
- Injektiivne funktsioon
- Injektio
- Injektiv
- Injektive Funktion
- Injektiv funksjon
- Injektiv funktion
- Injektív leképezés
- Injektivna funkcija
- Injektivna funkcija
- Injektivna preslikava
- m.0c95n
- m4vy
- Prosté zobrazení
- Prosté zobrazenie
- Q182003
- Đơn ánh
- Ένα προς ένα
- Ін'єкція (математика)
- Ін’екцыя (матэматыка)
- Инекция
- Инъективті функция
- Инъекция (математика)
- Инјективна функција
- Инјективно пресликавање
- פונקציה חד-חד-ערכית
- تابع یکبهیک
- دالة متباينة
- فانکشنی یەکبەیەک
- एकैकी फलन
- உள்ளிடுகோப்பு
- ฟังก์ชันหนึ่งต่อหนึ่ง
- 单射
- 単射
- 단사 함수
- SeeAlso
- List of set identities
- Relations
- Sets
- Subject
- Category:Basic concepts in set theory
- Category:Functions and mappings
- Category:Types of functions
- Thumbnail
- WasDerivedFrom
- Injective function?oldid=1122880558&ns=0
- WikiPageLength
- 15716
- Wikipage page ID
- 45196
- Wikipage revision ID
- 1122880558
- WikiPageUsesTemplate
- Template:=
- Template:≠
- Template:Annotated link
- Template:Authority control
- Template:Citation
- Template:Commons category
- Template:Em
- Template:Functions
- Template:Further
- Template:Gallery
- Template:Hatnote
- Template:Math
- Template:Mathematical logic
- Template:Redirect
- Template:Reflist
- Template:Refn
- Template:See also
- Template:Short description
- Template:Slink
- Template:Wiktionary