Division algorithm

A division algorithm is an algorithm which, given two integers N and D, computes their quotient and/or remainder, the result of Euclidean division. Some are applied by hand, while others are employed by digital circuit designs and software. Variants of these algorithms allow using fast multiplication algorithms. It results that, for large integers, the computer time needed for a division is the same, up to a constant factor, as the time needed for a multiplication, whichever multiplication algorithm is used. Discussion will refer to the form , where is the input, and is the output.

Comment
enA division algorithm is an algorithm which, given two integers N and D, computes their quotient and/or remainder, the result of Euclidean division. Some are applied by hand, while others are employed by digital circuit designs and software. Variants of these algorithms allow using fast multiplication algorithms. It results that, for large integers, the computer time needed for a division is the same, up to a constant factor, as the time needed for a multiplication, whichever multiplication algorithm is used. Discussion will refer to the form , where is the input, and is the output.
Date
enJune 2015
Has abstract
enA division algorithm is an algorithm which, given two integers N and D, computes their quotient and/or remainder, the result of Euclidean division. Some are applied by hand, while others are employed by digital circuit designs and software. Division algorithms fall into two main categories: slow division and fast division. Slow division algorithms produce one digit of the final quotient per iteration. Examples of slow division include , non-performing restoring, , and division. Fast division methods start with a close approximation to the final quotient and produce twice as many digits of the final quotient on each iteration. and algorithms fall into this category. Variants of these algorithms allow using fast multiplication algorithms. It results that, for large integers, the computer time needed for a division is the same, up to a constant factor, as the time needed for a multiplication, whichever multiplication algorithm is used. Discussion will refer to the form , where * N = numerator (dividend) * D = denominator (divisor) is the input, and * Q = quotient * R = remainder is the output.
Is primary topic of
Division algorithm
Label
enDivision algorithm
Link from a Wikipage to an external page
www.quadibloc.com/comp/cp0202.htm
web.archive.org/web/20180703001722/http:/www.quadibloc.com/comp/cp0202.htm
Link from a Wikipage to another Wikipage
Algorithm
AMD
Approximation
Barrett reduction
Binomial theorem
Burnikel-Ziegler division
Category:Articles with example pseudocode
Category:Binary arithmetic
Category:Computer arithmetic
Category:Computer arithmetic algorithms
Category:Division (mathematics)
Chebyshev polynomial
Chunking (division)
Compiler
Compilers
Computational complexity
Cryptography
Double precision
Equioscillation theorem
Euclid's Elements
Euclidean division
Extended precision
Fixed point arithmetic
Fixed-point arithmetic
Floating-point
Fused multiply–add
Galley division
Greatest common divisor
Hexadecimal
IBM
Imperial College London
Integer (computer science)
K. D. Tocher
Karatsuba algorithm
Long division
Lookup table
Microprocessor
Modular arithmetic
Montgomery reduction
Multiplication algorithm
Multiplicative inverse
Newton's method
OEIS
One's complement
Original Intel Pentium (P5 microarchitecture)
Output-sensitive algorithm
Pentium FDIV bug
Power of two
Precision (computer science)
Quotient
Radix
Rate of convergence
Relative error
Remainder
Remez algorithm
Round-off error
Schönhage–Strassen algorithm
Short division
Single precision
Toom–Cook multiplication
Two's complement
University of Illinois
Reason
enBarrett reduction is usually understood to be the algorithm for computing the remainder that one gets from having precomputed the inverse of the denominator. Rather than providing a solution to the problem of division, it requires that a separate solution is already available!
SameAs
3FVZG
Division algorithm
m.096h2k
Q3526714
Алгоритм деления
الگوریتم تقسیم
除法器
除算 (デジタル)
SeeAlso
Binary number
Subject
Category:Articles with example pseudocode
Category:Binary arithmetic
Category:Computer arithmetic
Category:Computer arithmetic algorithms
Category:Division (mathematics)
WasDerivedFrom
Division algorithm?oldid=1119822964&ns=0
WikiPageLength
35118
Wikipage page ID
3336479
Wikipage revision ID
1119822964
WikiPageUsesTemplate
Template:About
Template:Anchor
Template:Citation needed
Template:Cite web
Template:Efn
Template:Expand section
Template:Further
Template:Main
Template:Notelist
Template:Number-theoretic algorithms
Template:OEIS link
Template:Reflist
Template:Rp
Template:See also
Template:Sfrac
Template:Short description
Template:Snd
Template:Var
Template:Verification needed