Fermat polygonal number theorem
In additive number theory, the Fermat polygonal number theorem states that every positive integer is a sum of at most n n-gonal numbers. That is, every positive integer can be written as the sum of three or fewer triangular numbers, and as the sum of four or fewer square numbers, and as the sum of five or fewer pentagonal numbers, and so on. That is, the n-gonal numbers form an additive basis of order n.
- Abstraction100002137
- Amount105107765
- Attribute100024264
- Communication100033020
- Magnitude105090441
- Message106598915
- municipality
- Number105121418
- Property104916342
- Proposition106750804
- Statement106722453
- Theorem106752293
- Thing
- WikicatFigurateNumbers
- WikicatMathematicalTheorems
- WikicatTheoremsInNumberTheory
- Comment
- enIn additive number theory, the Fermat polygonal number theorem states that every positive integer is a sum of at most n n-gonal numbers. That is, every positive integer can be written as the sum of three or fewer triangular numbers, and as the sum of four or fewer square numbers, and as the sum of five or fewer pentagonal numbers, and so on. That is, the n-gonal numbers form an additive basis of order n.
- DifferentFrom
- Fermat's Last Theorem
- Has abstract
- enIn additive number theory, the Fermat polygonal number theorem states that every positive integer is a sum of at most n n-gonal numbers. That is, every positive integer can be written as the sum of three or fewer triangular numbers, and as the sum of four or fewer square numbers, and as the sum of five or fewer pentagonal numbers, and so on. That is, the n-gonal numbers form an additive basis of order n.
- Hypernym
- Sum
- Is primary topic of
- Fermat polygonal number theorem
- Label
- enFermat polygonal number theorem
- Link from a Wikipage to an external page
- archive.org/details/diophantusofalex00heatiala
- Link from a Wikipage to another Wikipage
- Additive basis
- Additive number theory
- Carl Friedrich Gauss
- Category:Additive number theory
- Category:Analytic number theory
- Category:Figurate numbers
- Category:Theorems in number theory
- Cauchy
- Disquisitiones Arithmeticae
- Eureka (word)
- Gauss's diary
- Joseph Louis Lagrange
- Lagrange's four-square theorem
- Pentagonal number
- Pierre de Fermat
- Pollock's conjectures
- Polygonal number
- Springer Science+Business Media
- Square number
- Triangular number
- Waring's problem
- SameAs
- C8bb
- Fermat polygonal number theorem
- Fermatscher Polygonalzahlensatz
- Fermat’n monikulmiolause
- m.03gsbd
- Q1146791
- Teorema del nombre poligonal de Fermat
- Teorema del número poligonal de Fermat
- Teorema di Fermat sui numeri poligonali
- Teorema do número poligonal de Fermat
- Théorème des nombres polygonaux de Fermat
- Veelhoeksgetalstelling van Fermat
- Định lý Fermat về số đa giác đều
- Теорема Ферма о многоугольных числах
- Теорема Ферма про багатокутні числа
- משפט המספרים המצולעים
- مبرهنة العدد المضلعي لفيرما
- 多角数定理
- 费马多边形数定理
- 페르마 다각수 정리
- Subject
- Category:Additive number theory
- Category:Analytic number theory
- Category:Figurate numbers
- Category:Theorems in number theory
- Title
- enFermat's Polygonal Number Theorem
- Urlname
- enFermatsPolygonalNumberTheorem
- WasDerivedFrom
- Fermat polygonal number theorem?oldid=1117458125&ns=0
- WikiPageLength
- 4209
- Wikipage page ID
- 847886
- Wikipage revision ID
- 1117458125
- WikiPageUsesTemplate
- Template:Citation
- Template:Distinguish
- Template:Harvtxt
- Template:Math
- Template:Mathworld
- Template:Mvar
- Template:Pierre de Fermat
- Template:Reflist
- Template:Short description